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Abstract

We tackle stationary crowd analysis in this paper, which
is similarly important as modeling mobile groups in crowd
scenes and finds many applications in surveillance. Our key
contribution is to propose a robust algorithm of estimat-
ing how long a foreground pixel becomes stationary. It is
much more challenging than only subtracting background
because failure at a single frame due to local movement
of objects, lighting variation, and occlusion could lead to
large errors on stationary time estimation. To accomplish
decent results, sparse constraints along spatial and tempo-
ral dimensions are jointly added by mixed partials to shape
a 3D stationary time map. It is formulated as a L0 opti-
mization problem.

Besides background subtraction, it distinguishes among
different foreground objects, which are close or overlapped
in the spatio-temporal space by using a locally shared fore-
ground codebook. The proposed technologies are used to
detect four types of stationary group activities and analyze
crowd scene structures. We provide the first public bench-
mark dataset1 for stationary time estimation and stationary
group analysis.

1. Introduction
Crowd analysis finds many important applications in

video surveillance [25, 1, 4, 26, 15, 18, 32, 30, 6, 31,
20]. Crowd management and traffic control are common
problems in public areas when the population density is
high. Existing work focuses on detecting motion patterns
of crowds [25, 1, 26, 18, 32, 13, 30, 31, 20] and an-
alyzing interactions among pedestrians during movement
[15, 17, 19, 28, 20]. On the other hand, stationary crowd
group analysis has never been sufficiently studied although
these groups can provide surprisingly rich information.

For example, study of [16] shows that stationary groups
have a greater impact on changing traffic patterns than mo-
bile groups in some cases. When pedestrians move around,
they adjust speed but not direction to avoid collisions. Such

1http://www.ee.cuhk.edu.hk/∼xgwang/CUHKStationaryCrowd.html

(a) Input video and selected frames

(b) Output stationary time map

Figure 1. Estimating a 3D stationary time map from a video se-
quence. Results from a few frames are shown. How long a pixel
has been stationary up to each frame is encoded by the intensity
level. Brighter pixels correspond to longer time.

self-organized behaviors keep traffic flow smooth. If pedes-
trians form stationary groups, they force others to change
directions and much affect transportation efficiency. Emer-
gence and dispersal of stationary groups cause dynamic
variation of crowd traffic patterns. It is thus of great inter-
est to incorporate stationary groups into dynamic modeling
of crowd systems. It is also worth investigating where sta-
tionary groups are likely to emerge and how long they tend
to stay. An average stationary time map is shown in Fig-
ure 3. It is informative for crowd management, as well as
provision of facilities and support.

Groups that stay for a period of time are often worth at-
tention. Emergence, dispersal, stationary duration, and sta-
tus of them may incur great security interest. From detected
activities, we may discover valuable information, such as
relation of people and possible abnormality. Figure 2 shows
four types of stationary group activities that are to be de-
tected in this paper.

Our method estimates stationary time, i.e., period that
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(a) group gathering

(d) group deforming(b) group stopping by

(c) group relocating

Figure 2. Four major types of stationary group activities to be detected in our work, typical in the CVPR conference scene during the break
between two oral sessions. (a) People join a group from different directions at different time. When all people arrive, the whole group
moves along the same destination. (b) A group of people enter the view together, stay for a period of time, and leave together. (c) After
staying at a place for a while, people move to another location and become stationary again. (d) People in a group have their own activities,
taking photos for example. Please view images in color.
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Figure 3. Averaged stationary time distribution over 4 hours. Sta-
tionary groups tend to emerge and stay long around the informa-
tion booth and in front of the ticketing windows (better viewed in
color).

a foreground pixel exists in a local region allowing lo-
cal movements. As shown in Figure 1, given a video se-
quence, our method produces a 3D stationary time map in
the spatio-temporal space. This is different from only sub-
tracting background. We have experimented with simply
detecting foreground at individual frames and computing
how long a pixel has been in the foreground. The result
is usually poor. We thus treat it as a new research prob-
lem. It is an important step for further analysis on stationary
crowds.

Figure 4 illustrates the inherent challenge. First, back-
ground subtraction does not distinguish among different
foreground objects. If two objects overlap, the estimated
stationary time could be longer than what it should be in the
overlapping region, as shown in Figures 4(a) and 5. This
happens frequently in crowded scenes.

Second, people’s local movement is very common dur-
ing the stationary period as shown in Figure 4(b). We should
keep on accumulating stationary time even with these lo-
cal movements, instead of frequently resetting time to 0.
Matching locally moving foreground objects especially in
crowded scenes is not easy. Third, most background sub-

(a1) (a3)(a2)

(b2)(b1) (b3)

(c2)(c1) (c3)

Original Frames Expected Results Error Results

Reset to zero

time time

Keep accumulating

Figure 4. Challenges of stationary time estimation. Results from
background subtraction are erroneous. (a) Two foreground objects
with spatio-temporal overlap. (b) Local movement of objects also
leads to estimation errors. (c) If a foreground pixel is misclassified
as background in one frame, stationary time resets to 0, which is
wrong. In (c3), misclassification happens in the middle, making
time reset.

traction methods do not consider temporal consistency. If
a foreground pixel is misclassified at one frame, stationary
time could be mistakenly reset to 0, as shown in Figure 4(c).
Given all these challenges coupled, none of the existing ap-
proaches is ready to solve our problem.

Our contributions are as follows. (1) A robust stationary-
time estimation algorithm is proposed. By using a locally
shared foreground codebook, it separates foreground ob-
jects even if they are close or overlapping in the spatio-
temporal space. It also allows for matching shifted fore-
ground objects in local regions. (2) Sparse constraints in
spatial and temporal dimensions are jointly added to con-
struct a 3D stationary-time map. This is formulated as a
L0 optimization problem, much more powerful in regular-
ization than commonly used local smoothness (e.g. MRF)
added on image and temporal space separately. The op-
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timization is performed on a batch of frames instead of
individual ones. This process is robust to occasional lo-
cal movement of stationary objects, occlusions, and mis-
classification. (3) A set of new descriptors are proposed
to describe stationary group activities illustrated in Fig-
ure 2 and estimated stationary time is used to understand
crowd scene structures as shown in Figure 3. (4) A dataset
with annotated ground truth is provided to the public for
stationary-time estimation and stationary group activity de-
tection, which is the first in its kind.

2. Related Work
Background subtraction is well studied. The adaptive

Gaussian mixture model proposed by Stauffer et al. [23]
is one popular approach and its improved version was pro-
posed by Zivkovic et al. [33]. It uses Gaussian mixture to
adapt background change. Kim et al. [11] modeled com-
plex background variations with a codebook. Challenges
faced by these approaches have been discussed in Section
1. Robust PCA [3] separates foreground and background as
a sparse matrix and a low rank matrix. It is not suitable for
this estimation task as foreground pixels with long station-
ary time are very likely to be classified as background.

The background subtraction work more relevant to ours
is the Bayesian model proposed in [21]. It employed joint
features of color and location and performed nonparametric
density estimation to handle local movement on background
(e.g. waves). To enforce temporal persistence, the likeli-
hood of a pixel being foreground increases by a constant if
it is detected as foreground in the previous frame. Spatial
smoothness was enforced within a single frame with MRF.

This method is quite different from ours. Its constraints
on spatial and temporal consistency are separate, while ours
jointly models them with sparsity on second-order gradients
in the 3D space. Also, the Bayesian model performs opti-
mization within a frame or between two frames, while ours
jointly optimizes a batch of video frames. L0 sparsity is a
very powerful regularization form usable in many applica-
tions. Finally, it does not distinguish among foreground ob-
jects. Dense tracking [24] on foreground pixels for station-
ary time estimation could be problematic due to frequent
occlusion in crowd and the difficulty of finding good fea-
ture points. Pedestrian detection and tracking do not work
well too in crowd scenes due to heavy occlusion. Our exper-
iments show that these approaches cannot produce similarly
good results as ours.

Detecting social groups and analyzing their activities is
another stream. Cristani et al. [7] studied the interaction of
standing people in a sociological view. Other work along
this line mainly considers moving groups. Pedestrians are
grouped based on their relative distances and similarities of
moving patterns [10, 9, 5]. Various features and models
were proposed to recognize different mobile group behav-
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Figure 5. Illustration of using locally shared foreground codebook
to separate foreground objects close or overlapped in the spatio-
temporal space. (a) 3 frames from the same region. When person
B arrives, A leaves the group. (b) Temporal slice image along the
yellow line temporally. A and B overlap. (c) Foreground pixels
assigned with three different codes. They are well separated. (d)
Foreground codes (left) and estimated stationary time (right).

iors [29, 14, 2, 22, 8, 12]. As discussed in Figure 2, sta-
tionary groups have their own properties and need special
features to characterize them.

3. Stationary Time Estimation Model
Pixel-level stationary time is estimated from a color

video sequence, which is uniformly divided into short clips
with overlap, such that information of foreground codes and
stationary time can be consistent across clips.

3.1. Guided Foreground Mode Encoding

In contrast to background subtraction that only indicates
whether a pixel is foreground or not, we label pixels with
multiple foreground modes, making pixels belonging to dif-
ferent people can be also differentiated.

Foreground pixels are clustered into M modes. Each
pixel p is with a 5D feature vector, i.e., Ip =
[Rp, Gp, Bp, Xp, Yp]T , where [Rp, Gp, Bp] and [Xp, Yp]
are RGB values and spatial coordinates of p. Spatial loca-
tion makes it possible to share one mode in a local region,
robust to small movement. Pedestrians with different RGB
values are clustered into modes. Cluster centers are denoted
as {d1, . . . ,dM} (di ∈ R5×1,∀i = 1, . . . ,M ), forming a
5×M matrix D = [d1, . . . ,dM ]. D is initialized by mean
shift, and M varies for different video clips.

Our encoding process starts from the background sub-
traction result [11], where up = 0 indicates p is on the
background and up = 1 denotes foreground. This result
is noisy. Misclassification at a single frame could lead to
large errors on stationary time estimation. Our goal is to
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find a M dimension coding vector αp (αp = {0, 1}M ) for
each pixel p. The entries of αp can only be 1 or 0, and at
most one element can be 1. If all of the entries are 0, p is on
the background and ‖αp‖1 = 0. If the mth element is 1, p
belongs to foreground mode dm and ‖αp‖1 = 1.

We use Q(D,α) to balance encoding errors on fore-
ground pixels and deviation from the initial background
subtraction result using two terms. It is expressed as

Q(D,α) =
∑

{p|‖αp‖=1}

‖Dαp − Ip‖22 + η
∑
p

(‖αp‖1 − up)
2.

(1)
η is a parameter. Q(D,α) is minimized together with other
sparse terms, to be detailed shortly. Both D and α will be
estimated.

3.2. Sparse Gradient Prior

The stationary time of a pixel p increases if it stays with
the same foreground label αp. Due to lighting variation,
local movement, and occlusion, estimation of α could be
noisy. Our finding is that change of αp on ideal stationary
objects without aforementioned problems should be very
sparse. We accordingly impose a sparse prior c (α) during
estimation of label α to resist noise. It is written as

c (α) = # {p| ||∂x,tαp||2 + ||∂y,tαp||2 6= 0} , (2)

where ∂x,t and ∂y,t are the second-order gradients with re-
gard to x − t and y − t space derivatives. # counts the
number of changes in the mixed partials.

This is exactly anL0 gradient minimization problem. Xu
et al. [27] discussed a similar problem and showed that L0

norm, unlike L1 and L2 sparsity, has many excellent prop-
erties in solving a large variety of image problems. They
achieved decent results by globally controlling the num-
ber of non-zero gradients in order to constrain the produced
sparse structure. We employ a solver similar to the one pub-
licly available in the project website [27]. We make mod-
ifications on processing spatio-temporal information with
second-order gradients, detailed below.

Why Second-Order Gradients? To enforce smoothness
during segmentation and foreground region labeling, a sim-
ple prior incorporating first-order gradients along each di-
mension may be used, expressed as

c′ (α) = # {p| ||∂xαp||2 + ||∂yαp||2 + ||∂tαp||2 6= 0} .
(3)

We compare this form with that in Eq. (2) to show second-
order gradients are more effective for stationary-time esti-
mation. In Eq. (3), any nonzero values in x, y, or t gradients
would result in nonzero c′. When calculating c′, a stationary
person produces the result shown in Figure 6(c), where all
body boundaries inevitably produce many nonzero values.

(a)

(e)

(d)

(c)

(b)
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Figure 6. By adding the sparse prior, we estimate α better from
noisy and/or locally moving objects. (a) Stages of two pedestrians
arriving, staying, locally moving, and leaving (x-axis: time; y-
axis: scanline pixels highlighted in orange). (b) Non-zero ∂x,t
values are shown in black. (c) Nonzero gradients ∂x+∂t shown in
black. (d) Our labeling result with ∂x,t. (e) Erroneous labeling
result with ∂x+∂t.

When using c′ as a prior for regularization, all these bound-
ary pixels will be regularized, which is not our intention.

There is no such problem in Eq. (2), as spatial-boundary-
caused nonzero gradients would be eliminated if the ob-
ject is stationary when calculating ∂x,t for those pixels. As
shown in Figure 6(b), only a few moving boundary pixels
yield nonzero c. Thus only penalizing these pixels would
result in very sparse labeling structures, robust to noise and
outliers. We compare the final results of our system by us-
ing these two priors respectively in Figure 6(d) and (e). The
second order gradient is effective to produce reasonable la-
bels for different foreground regions.

3.3. Joint Optimization

Eqs. (1) and (2) are fed into unified optimization as

min
D,α

{Q(D,α) + λc (α)} ,

s.t. αp = {0, 1}M , ‖αp‖1 ≤ 1. (4)

The data term Q(D,α) generates M mid-level semantic
modes from hundreds of intensity levels, which signifi-
cantly simplifies locally matching foreground pixels. The
prior c (α) captures the structural sparsity for each mode of
a stationary object in the spatio-temporal space.

3.4. Pixel-Wise Stationary Time Estimation

It is easy to estimate stationary time based on the change
of foreground modes (or labels). If foreground mode of a
pixel is di starting from frame t1, and it is changed to a
different foreground mode dj or background at frame t2, the
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stationary time of this pixel is t2 − t1. If a pixel is changed
from background to a foregound mode, it locally searches
for a pixel with the same mode in its previous frame. If
such a matched pixel is found, its stationary time will be
inherited by the current pixel, instead of counting from zero.
This avoid underestimation caused by local movement.

If a frame is close to the boundary of a video clip, esti-
mation may not be similarly reliable. Our system uses over-
lapping video clips with shared buffer frames. Only the es-
timated stationary time in frames outside the buffer is kept
for reliability’s sake. If objects stay longer than one clip du-
ration, their foreground modes can be matched across clips
so that the stationary time can continue in accumulation.

4. Solver
D and α in Eq. (4) are coupled and the problem is highly

non-convex. We introduce a set of axillary vectors α0
p ∈

RM to relax the original problem, expressed as

min
D,α,α0

{
Q(D,α0) + β1

∑
p

‖αp −α0
p‖22 + λc (α)

}
,

s.t. αp = {0, 1}M , ‖αp‖1 ≤ 1,α0
p = {0, 1}M , ‖α0

p‖1 ≤ 1. (5)

When β1 is large enough, α0
p perfectly approaches αp. It

makes the original challenging problem boil down to two
sub-ones. Satisfactory result can be achieved by solving
the two optimization problems iteratively and increasing β1

after each iteration. This strategy was used in [27]. It is
rather effective to solveL0 gradient minimization problems.

4.1. Solve for D and α0
p

With αp fixed, the sparse prior term is a constant and can
therefore be omitted. We rewrite Eq. (5) as

min
D,α0

{
Q(D,α0) + β1

∑
p

‖αp −α0
p‖22

}
,

s.t. α0
p = {0, 1}M , ‖α0

p‖1 ≤ 1. (6)

D and α0
p are estimated iteratively. Given α0

p, D is obtained
by solving a least square problem. Given D, α0

p is achieved
by naively searching (M + 1) possibilities of foreground
modes and background.

4.2. Solve for αp

Given D and α0
p, the second optimization problem is

min
α

{
β1
∑
p

‖αp −α0
p‖22 + λc (α)

}
. (7)

The constraint that αp = {0, 1}M is first omitted and is then
added back with threshold when αp converges. Eq. (7) is

non-convex. We further employ axillary vectors h and v to
approximate ∂x,tα and ∂y,tα similar to Eq. (5). It yields

min
α,h,v

{
β1
∑
p

‖αp −α0
p‖22 + λc (h, v)

+β2
∑
p

(
‖∂x,tαp − hp‖22 + ‖∂y,tαp − vp‖22

)}
. (8)

c(h, v) = #{p|||hp||22 + ||vp||22 6= 0}. We solve Eq. (8)
again with two sub-optimization problems iteratively, simi-
lar to solving Eq. (5).

Estimate (h, v) Eq. (8) is simplified to

(ĥ, v̂) = argmin
h,v

{
λc (h, v) + β2

∑
p

||∂x,tαp − hp||22

+β2
∑
p

||∂y,tαp − vp||22

}
. (9)

As the problem becomes independent of p, pixel-wise solu-
tion is yielded as

(ĥp, v̂p) =

{
(0, 0) if λ/β2 ≥ ||∂x,tαp||22 + ||∂y,tαp||22
(∂x,tαp, ∂y,tαp) elsewhere

A larger λ means the structure term is more important, and
more non-zero gradients are set to zeros. β2 increases in
iterations.

Estimate α Eq. (8) is updated to

α̂ = argmin
α

{
β1
∑
p

‖ αp −α0
p ‖22

+β2
∑
p

(
||∂x,tαp − hp||22 + ||∂y,tαp − vp||22

)}
, (10)

This is a quadratic optimization problem with a closed-form
solution. Its solution and relevant proof of the solver are
included in the supplementary material downloadable from
the project website.
β1 and β2 are initialized as 1. They automatically in-

crease in iterations, as described in [27]. Our optimization
quickly converges after 3-5 iterations. An example is shown
in Figure 7. Experiments in [27] and for this method show
convergence is not sensitive to initial β1 and β2 values.

5. Experiments and Results
Two datasets are used for evaluation: one is the Grand

Central Train Station dataset [32] and the other is collected
by us. For each foreground pixel, its stationary time up to
the current frame is manually annotated. 17 frames (with
more than 8 million pixels) uniformly sampled from the two
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Figure 7. Illustration of convergence of α in the x− t plane. Initial
estimate and update in different iterations are shown. Noise is
gradually removed.

(a) (b)

Figure 8. Annotated stationary time maps on the Grand Central
dataset [32] (a) and the dataset collected by us (b). Images are
better viewed in color.

datasets are annotated at the pixel level. Examples of anno-
tated stationary time maps are shown in Figure 8. Details of
these datasets are included in Table 1.

Each video is segmented into one-minute clips. There is
25% overlap between neighboring clips. Our current unop-
timized MATLAB implementation on Intel CPU @3.3GHz
takes 12 minutes to process a one-minute video clip.
η in Eq. (1) and λ in Eq. (4) are the parameters to be set.

Their choice depends on the quality of initial background
subtraction results and confidence on the sparse prior. We
empirically set η = 1.5 and λ = 20.

Different types of evaluation are conducted. The average
estimation error on stationary time (ET) for all foreground
pixels is obtained. In addition, we compute the ratio be-
tween the estimation error and ground truth for each fore-
ground pixel. Then all the ratios on foreground pixels are
averaged. This measure is denoted as average estimation
error ratio on stationary time (ERT). If a pixel has become
stationary longer than 10 seconds up to the current frame,
it is regarded as stationary. Several detection measures are
used including (1) false alarm rate (FAR); (2) missed detec-
tion rate (MDR); and (3) total error rate (TER).

We compare our results with those of several background
subtraction methods including improved adaptive Gaussian

Table 1. Details of Datasets
Dataset I [32] Dataset II

Scene type Indoor Outdoor
Video length 3, 500 seconds 800 seconds
Frame rate 24 fps 24 fps
Resolution 960× 540 768× 576

Number of annotated frames 8 9
Number of stationary pixels 147, 930 553, 505

on the annotated frames
Total number of pixels 4, 147, 200 3, 981, 312

on the annotated frames

Table 2. Results of stationary time estimation on Dataset I. ET is
measured in seconds.

Methods FAR MDR TER ET ERT

Ours 0.29% 3.49% 0.39% 10.04 12.21%
Ours (FOrder) 0.51% 5.90% 0.69% 16.12 26.77%

GMM [33] 0.27% 24.51% 1.11% 29.46 43.98%
Codebook [11] 0.26% 21.03% 0.93% 29.51 40.14%
Bayesian [21] 0.33% 20.18% 1.01% 26.70 39.16%
Tracking [24] 0.30% 24.26% 1.09% 40.78 56.49%

Table 3. Results of stationary time estimation on Dataset II. ET is
measured in seconds.

Methods FAR MDR TER ET ERT

Ours 0.91% 0.54% 0.86% 15.88 8.67%
Ours (FOrder) 1.37% 0.98% 1.32% 16.90 10.68%

GMM [33] 0.92% 16.24% 3.06% 57.41 39.76%
Codebook [11] 1.03% 13.37% 2.75% 58.28 40.67%
Bayesian [21] 1.05% 12.26% 2.60% 45.20 32.19%
Tracking [24] 0.92% 5.75% 1.60% 54.14 38.86%

mixture model [33], codebook model [11], and adaptive
Bayesian model [21]. Stationary time is accumulated if a
pixel is detected as foreground. We also test dense tracking
[24] on detected foreground pixels [11]. Stationary time
is estimated as the length of the trajectory since a pixel be-
comes foreground. We also report the result of replacing the
second-order gradients (Eq. (2)) with first-order ones (Eq.
(3)) in our approach. This simplified version is denoted as
“Ours (FOrder)”.

5.1. Result Analysis

The results on the two datasets are reported in Tables 2
and 3. Overall, our approach outperforms all the other al-
ternatives on both the indoor and outdoor datasets. Its false
alarm rate is slightly higher than a few methods because of
the smoothing effect yielded by the high sparsity prior. Its
misdetection rate is 6-15 times lower. The stationary time
estimation error is also at least 2.5 times lower than other
methods. If some shadow cannot be perfectly removed by
initial background subtraction, false alarms may be caused.

With large misdetection rates and estimation errors,
background subtraction is not that suitable for stationary
time estimation. In general, the adaptive Bayesian model
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[21] works better than other approaches, because it adds
smoothness constraints in the spatial domain and between
two successive frames. But it is still not similarly good as
ours because of various reasons discussed in Sections 1 and
2. The smoothness prior causes more false alarms than ours,
which manifest the necessity to employ the second-order
gradients sparse priors.

6. Applications

We present a few applications of stationary groups and
their formation duration estimation.

6.1. Stationary Group Activity Detection

We apply our method to detecting stationary group activ-
ities. The ground central train station images [32] contain
various stationary group activities. We detect the four types
of activities illustrated in Figure 2 because they are common
in crowd surveillance. Ground truth is manually annotated
on this dataset. We only consider groups whose station-
ary time is longer than 30 seconds and sizes are larger than
2, 500 pixels since large groups with long stationary time
draw attention easily in surveillance applications. A detec-
tor is trained for each type of activities separately, searching
the entire video sequence. A true positive is counted if the
overlap between a detected group and the ground truth is
larger than 50% in the spatio-temporal space. The numbers
of training and test samples are summarized in Table 4.

A good detector has three key features. (1) It should ac-
curately estimate the stationary period and identify emer-
gence and dispersal activity of a stationary group. (2) It
should cluster detected stationary pixels into groups. Our
method employs mean shift for clustering given our fairly
reasonable pixel-level time estimation. (3) Motion descrip-
tors to characterize emergence, dispersal, and group defor-
mation should be resulted in. We propose 12 stationary
group descriptors ({D1, . . . ,D12}) based on keypoint tra-
jectories extracted with a KLT tracker, detailed below.
D1-D4 characterize the emergence process, i.e., whether

members join a group from the same direction within a short
period or from multiple directions over an extended period.
The histograms of incoming trajectories over time (ET ) and
directions (EA) are computed. The dominant modes (MT

andMA) of the two histograms are obtained by mean shift.
We set D1 = |MT |/|ET | and D3 = |MA|/|EA|, where | · |
denotes the size of a mode or histogram. D2 and D4 are the
variance of ET and EA.

Similarly, D5-D8 characterize the dispersal process, i.e.
whether members leave a group towards the same direction
around the same time, or in many directions at different
time. They are based on outgoing trajectories. D9 is the
spatial variance of a group center and can be used to detect
group relocation (moving to another place).

Table 4. Activity Detection Result (False Alarm / Misdetection)
Activities Gather Stop by Relocate Deform

Training samples 30 30 30 30
Test samples 45 58 27 50

Ours 3 / 6 5 / 6 4 / 1 6 / 4
GMM [33] 4 / 23 6 / 25 4 / 9 7 / 19

Codebook [11] 3 / 22 4 / 23 4 / 8 7 / 18
Bayesian [21] 2 / 23 4 / 24 3 / 8 6 / 17
Tracking [24] 4 / 25 5 / 28 5 / 12 6 / 20

D10-D12 denote whether a stationary group keeps its in-
ternal structure stable or not. They compute the topologi-
cal variation of feature points inside the stationary group.
For a point i in the group, its K-nearest neighbors Nt(i)
and topology of neighbors tend to be stable. We use
µt(i) = 1 − |Nt(i) ∩Nt−∆(i)| /K to measure the por-
tion of varying neighbors from time t − ∆ to t. The
K ′ invariant neighbors are ranked according to their dis-
tances to i. Rt(i) = [σ1

t (i), . . . , σK′

t (i)] and Rt−∆(i) =
[σ1

t−∆(i), . . . , σK′

t−∆(i)] are the rankings of neighbors at
time t and t − ∆. ςt(i) is the distance between Rt(i) and
Rt−∆(i). Similarly, κt(i) is computed from rankings based
on angles. Finally, D10-D12 are computed as the average
over all the feature points during the whole stationary pe-
riod based on µt(i), ςt(i), and κt(i), respectively.

Given D1-D12 learned, linear SVM is used as the classi-
fier. More details are in our supplementary material. Table
4 reports the numbers of false alarms and missed detection
by different approaches. All methods use the same cluster-
ing method and group descriptors. They differ by the way
to estimate the stationary time as described in the previous
section. Because stationary time estimation is essential in
this application, our approach achieves the best results due
to its robustness to suppress noise.

6.2. Scene Understanding

Stationary time estimation can help scene understanding
and provide valuable statistics computed over time. For
example, an averaged stationary-time map computed over
all the groups in four hours on grand central train station
videos is shown in Figure 3. It indicates where stationary
groups tend to emerge, and how long they generally stay.
Such information is important for crowd management, pub-
lic facility design, event monitoring, and traffic control. A
simple scenario is that if stationary groups often appear at
an entrance to a building, alarm can be triggered for taking
further actions to improve traffic there.

7. Conclusion and Future Work
We have explored a new research topic of stationary

crowd group analysis, which has many important applica-
tions. A fundamental step towards getting useful informa-
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tion is to estimate the stationary time of foreground pixels,
which cannot be solved with existing background subtrac-
tion techniques. We propose a robust algorithm that adopts
a locally shared foreground codebook and uses second-
order gradients to shape the 3D stationary time map. It is
formulated as a L0 minimization problem and is solved by a
practically effective scheme. The proposed method, as well
as the research topic, can be applied to detecting stationary
group activities and crowd scene understanding.

We believe it will find many more interesting and valu-
able applications in future. For example, it may be incorpo-
rated into existing systems to model the influence of station-
ary groups on changing moving traffic and predicting social
relationship among pedestrians. The potential to study this
problem and deploy our solution is boundless.
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